Q.P. (Cod	le: 19	EE02	07											R	9
Reg.	N	0:						<u> </u>					7			
0	SI	DDF	IART	HINS	TIT	UTE O	F EN	GINE	ERIN	G &	TEC	HNOI	_ .OGY	:: PUTT	UR	
							(AU	TON	OMOL	JS)	I Le		1001		. on	
			B.Te	ech II	Year	II Sen	neste TROI	r Reg	ular NETL	Exan	ninati	ions .	July-2	021		
					(1	Electric	al and	Elect	ronics	Engi	neerin	ng)				
Time:	3 h	ours											M	ax. Mark	s: 60	
					(1	Answer	all Fi	ve Un	$\frac{1}{1}$	12 =	60 M	larks)				
1	a	a Convert point P(1,3,5) from cartesian to cylindrical and spherical co-ordinates											L4	6M		
		system.														
	b	Tran	sform	the ve	ector	field V	V=10	ax -8	ay +	6 az	to cyl	indric	al co-o	ordinate	L1	6M
		syste	em at p	oint P	(10,	-8, 6)										
								(DR							
2	a	Give	n poi	nt P (-2,6,3	3) and	A=y	ax +((x+z)	ay. E	Expres	s A i	n Cyl	indrical	L4	6M
		coordinates														
	b	Tran	sform	the v	vector	• A= 3	3i-2j-4	K at	P (x	=2, y	=3, 2	Z=3)	to cyl	indrical	L4	6M
		coord	dinates	3												
								UN	IT-II							
3	a	State	and e	explain	Cou	lomb's	law i	ndicat	ing cl	early	the u	nits o	f quan	tities in	L1	6M
		the e	quatio	n of fo	rce?											
	b	State	and p	rove C	auss'	s law a	nd wr	ite lim	itatio	ns of	Gauss	's law	?		L2	6M
								(DR							
4	a	Deter	rmine	the E	lectri	c filed	inten	sity a	t P(-0	.2, 0,	-2.3)) m d	ue to	a point	L4	6M
		charg	ge of 5	nc at	Q (0.2	2,0.1, -2	2.5) m	in air								
	b	An ii	nfinite	ly lon	g uni	form li	ne cha	arge is	s locat	ted at	y=3,	Z=5.	If pl	= 30 n	L4	6M
		C/m,	find t	he file	d inte	nsity E	at i) c	origin	, ii) P([0,6,1]) and	iii) P	(5,6,1)			
								UNI	T-III							
5	a	Deriv	ve the	contin	uity e	quatior	n. Wha	at is its	s phys	ical si	gnific	cance?			L1	6M
	b	Deriv	ve the	point f	orm o	of ohms	s law?								L1	6M
								C	R							
6	a	Deriv	ve the	expres	sion t	for para	ıllel pl	ate ca	pacito	or and	capa	citance	e of a o	co-axial	L4	6M
		cable	?													
	b.	A pai	rallel	plate c	apaci	tor has	an ar	ea of	0.8 m	2 sep	aratio	n of 0	.1 mm	with a	L4	6M
	(dieleo	etrie fo	or whic	ch Er	= 1000	and a	field	of 106	5 V/m	. Calc	ulate	C and	V		
							P	age 1	of 2							

Q.P. Code: 19EE0207					
7	a	Explain maxwell's second equation?	L1	6M	
	b	State and explain ampere's circuital law?	L1	6M	
		OR			
8	a	A Point charge of Q=-1.2 C has a velocity V=(5 ax +2 ay -3az)m/s. Find the	L4	6M	
		magnitude of the force exerted on the charge if i) $E=-18$ ax +5 ay -10 az V/m			
		and ii) B=-4 ax +4 ay +3 az T			
	b	Determine the force per meter length between two long parallel wires A and B	L4	4M	
		separated by distance 5 cm in air and carrying currents of 40 A in the same			
		direction.			

UNIT-V

9 Write Maxwell's equation in good conductors for time varying fields and static L1 12M fields both in differential and integral form?

OR

10 Explain faradays law of electromagnetic induction and there from derive L1 12M maxwell's equation in differential and integral form?

*** END ***